Search results for "Divergence-from-randomness model"
showing 4 items of 4 documents
A probabilistic estimation and prediction technique for dynamic continuous social science models: The evolution of the attitude of the Basque Country…
2015
In this paper, a computational technique to deal with uncertainty in dynamic continuous models in Social Sciences is presented.Considering data from surveys,the method consists of determining the probability distribution of the survey output and this allows to sample data and fit the model to the sampled data using a goodness-of-fit criterion based the χ2-test. Taking the fitted parameters that were not rejected by the χ2-test, substituting them into the model and computing their outputs, 95% confidence intervals in each time instant capturing the uncertainty of the survey data (probabilistic estimation) is built. Using the same set of obtained model parameters, a prediction over …
Probabilistic Logic under Coherence: Complexity and Algorithms
2005
In previous work [V. Biazzo, A. Gilio, T. Lukasiewicz and G. Sanfilippo, Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P, Journal of Applied Non-Classical Logics 12(2) (2002) 189---213.], we have explored the relationship between probabilistic reasoning under coherence and model-theoretic probabilistic reasoning. In particular, we have shown that the notions of g-coherence and of g-coherent entailment in probabilistic reasoning under coherence can be expressed by combining notions in model-theoretic probabilistic reasoning with concepts from default reasoning. In this paper, we continue this line of research. Based on the above sem…
Communication complexity in a 3-computer model
1996
It is proved that the probabilistic communication complexity of the identity function in a 3-computer model isO(√n).
Probabilistic Logic under Coherence, Model-Theoretic Probabilistic Logic, and Default Reasoning
2001
We study probabilistic logic under the viewpoint of the coherence principle of de Finetti. In detail, we explore the relationship between coherence-based and model-theoretic probabilistic logic. Interestingly, we show that the notions of g-coherence and of g-coherent entailment can be expressed by combining notions in model-theoretic probabilistic logic with concepts from default reasoning. Crucially, we even show that probabilistic reasoning under coherence is a probabilistic generalization of default reasoning in system P. That is, we provide a new probabilistic semantics for system P, which is neither based on infinitesimal probabilities nor on atomic-bound (or also big-stepped) probabil…